
AD -A31332 A METHODOLOGY FOR COLLECTING VALID SOFTWARE ENGINEERINO 3/
DATA(U) NAVAL RESEACH LAB WASHINOTON DC
V RBASL ET AL 12 OU 83 NR-679

UNCLASSIFED FG51 N

EohmoEEoiiEEI
I fllflfflfllflfflfllf3

1111.0 1, 2- 12 B 2.5

111W1
i=

~ ~IIIII -.II1

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of -AN[D4RDs '1,,

NRL Report 8679

A Methodology For Collecting
Valid Software Engineering Data

VICTOR R. BASILI

UniversitV of Maryland

and

DAVID M. WEISS

Computer Science and Systems Branch
Information Technology Division

July 12, 1983

DTICS ELECTEfP7

CL. D
NAVAL RESEARCH LABORATORY

Washington, D.C.
-_J

Approved for public release; distribution unlimited.

83 08 12 048

SECURITY CLASSIFICATION Of TMIS PACE f*%on 0810 E-red,

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
REPRT OCUENTTIO PAEREPIES CATALOTG UOBRM

IREP00RT NUMBER ;2 GOVT ACCESSION No.3 EOEN- CAO IG OBRM

NRL Report 8679 X // 3
4 TITLE (snd ScSIII.) S TYPE OF REPORT 6 PERIOD COVERED

Interim report on a continuing
A METHODOLOGY FOR COLLECTING VALID NRL problem.
SOFTWARE ENGINEERING DATA 6 PERFORMING ORG. REPORT NUMBER

1. AUTHOR(.) S. CONTRACT OR GRANT hNUMBER.

Victor R. Basili* and David M. Weiss

B PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM -ELEMENT. PROJECT. TASK
AREA & WORKC UNIT NUMBERS

Naval Research Laboratory 61153N, RR0140941
Washington, DC 20375 75-0199-0-3

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research July 12, 1983
Washington, DC 20360 24NME O AE

14. MONITORING AGENCY NAME A AODRESSIl different from Controling Office) IS. SECURITY CLASS. (.1 Ithe repot)

UNCLASSIFIED
ISO. DCCLASSIFICATION/DOWNGRAOING

SCHEDULE

IS. DISTRIBUTION STATEMENT fof tiNs Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of rho abstract efifeced in, Block 20, if ditl.eortt Io- Report)

1111. SUPPLEMENTARY NOTES

"University of Maryland

19. KEY WORDS (Continua on reverse .(do if nece.eesy and Identity by block nuasbor)

Sof tware engineering
Software development
Data collection

F0. AUSTbIACT (Continue on roves side It nocsee.,v ad Identfy5 by block hni.be,)

-neffective data collection method for evaluating software development methodologies
and for studying the software development process is described. The method uses goal-directed
data collection to evaluate methodologies with respect to the claims made for them. Such claims
are used as a basis for defining the goals of the data collection, establishing a list of questions of
interest to be answered by data analysis, defining a set of data categorization schemes. and
designing a data collection form.-

(Continued)

DD I ,0 NA 1473 EDITION Of' I NOV6GS IS OBSOLETE
S/N 0102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (Whe.n Does BnI..eO)

/

SECURITY CLASSIFICATION OF T.IS PAGE (h.. Di.. EwnI..)

20 ABSTRACT (Contlnu..d)

The data to be collected are based on the changes made to the software during develop-

ment and are obtained when the changes are made. To insure accuracy of the data, validation is

performed concurrently with software development and data collection. Validation is based on

interviews with those people supplying the data. Results from using the methodology show that

data validation is a necessary part of change data collection. Without it, as much as 50% of the

data may be erroneous.

Feasibility of the data collection methodology was demonstrated by applying it to five

different projects in two different environments (other NRL Reports). The application showed

that the methodology was both feasible and useful.

SECURITY CLASSIFICATION OF THIS PAOE(I D.o Ente.ed)

ii

........ ': I11 "'......... " ,, r -

CONTENTS

INTRODUCTION... I

SOFTWARE ENGINEERING EXPERIMENTATION ... 1

SCHEMA FOR THE INVESTIGATIVE METHODOLOGY .. 3

DETAILS OF SEL DATA COLLECTION AND VALIDATION... 10

Validation Differences Among SEL Projects...I11
Estimating Inaccuracies in the Data .. 12
Prevalent Mistakes in Completing Forms.. 12
Comparative Validation Results... 12
Erroneous Classifications ... 14
Variation in Misclassification .. 14
Conclusions Concerning Validation..........y... 15

RECOMMENDATIONS FOR DATA COLLECTORS... 15

Procedural Lessons Learned .. IS1
Nonprocedural Lessons Learned 16
Avoiding Data Collection Pitfalls ... 17
Limitations 17
Recommendations that May Be Provided to the Software Developer 18

CONCLUSIONS CONCERNING DATA COLLECTION FOR
METHODOLOGY EVALUATION PURPOSES ... 18

ACKNOWLEDGMENTS 18

REFERENCES.. 19

Accession For

NTIS GRA&I
DTIC TAB FOX]~
Unannounced E

Distribution/ -

Availability Codes
Avail and/or

Dist Special

A METHODOLOGY FOR COLLECTING

VALID SOFTWARE ENGINEERING DATA

INTRODUCTION

According to the mythology of computer science, the first computer program ever written con-
tained an error. Error detection and error correction are now considered to be the major cost factors in
software development [1-31. Much current and recent research is devoted to finding ways of preventing
software errors. This research includes areas such as requirements definition (4], automatic and
semiautomatic program generation [5,61, functional specification [7], abstract specification [8-11], pro-
cedural specification [121, code specification [13-151, verification [16-18], coding techniques [19-241,
error detection [25], testing [26,271, and language design [16,28-31].

One result of this research is that techniques claimed to be effective for preventing errors are in
abundance. Unfortunately, there have been few attempts at experimental verification of such claims.
The purpose of this report is to show how to obtain valid data that may be used both to learn more
about the software development process and to evaluate software development methodologies in a pro-
duction environment. Previous (15] and companion papers [321 present the data and evaluation results.
The methodology described in this report was developed as part of studies conducted by the Naval
Research Laboratory and by NASA's Software Engineering Laboratory (SEL) [33].

SOFTWARE ENGINEERING EXPERIMENTATION

The course of action in most sciences when faced with a question of opinion is to obtain experi-
mental verification. Software engineering disputes are not usually settled that way. Data from experi-
ments exist, but rarely apply to the question to be settled. There are a number of reasons for this state
of affairs. Probably the two most important are the number of potentially confounding factors involved
in software studies and the expense of attempting to do controlled studies in an industrial environment
involving medium or large-scale systems.

Rather than attempting controlled studies, we have devised a method for conducting accurate
causal analyses in production environments. Causal analyses are efforts to discover the causes of errors
and the reasons that changes are made to software. Such analyses are designed to provide some insight
into the software development and maintenance processes, to help confirm or reject claims made for
different methodologies, and to lead to better techniques for prevention, detection, and correction of
errors. Relatively few examples of this kind of study exist in the literature, some examples are
[34,35,4,15,361.

Most of the work in this area has centered on collecting data on errors committed by program-
mers during or after the coding phase of software development, oi the recoding phase of maintenance.
Analysis of the data consists of grouping the errors according to some classification scheme, such as by
symptom or by cause, and calculating distributions. Results obtained are quite sensitive to the error
classification scheme(s) selected.

As an example, Endres 1351 studied the errors made in preparing a new release of the DOS/VS
operating system. Two of his conclusions were that I. interfaces between modules* were not a mitior

Manuscript approved December 15. 1982.
'Endres' modules correspond to subroutines.

BASILI AND WEISS

source of error and that 2. nearly half of the errors originated in misunderstandings either of the prob-
lem to be solved or potential solutions, and were not susceptible to improvements in programming
techniques. Operating system developers might well conclude from this study that better system
specifications and more refined models of system behavior would result in a decreased incidence of
errors during development.

Such conclusions are tempting, but have several drawbacks. First, there is but a single study to
support these conclusions; more data are needed on operating system developments that show the same
error patterns before a firm conclusion may be drawn.

A second drawback is that Endres did not report the cost to correct errors in different categories;
the total effort expended in detecting and correcting errors caused by problem misunderstandings may
have been small compared to the total development effort.

A third drawback is that the errors were classified after development ended, and without contact
with the programmers. There is no way to estimate the accuracy of the data reported.

Causal analyses published in the literature suffer from a number of deficiencies. Many studies,
such as [37] seem to be based on unverified data; i.e., programmer responses on data collection forms
were not discussed with the programmers. Validation of error categorization by an independent valida-
tor is also apparently rare. (An exception is [38]). Studies of several projects using many data points
often either use too many error categories to permit useful analysis, or do not give sufficient early
thought to the categorization scheme to permit useful conclusions to be drawn. Examples of these
problems, and methods for avoiding them, will be discussed in later sections.

To provide useful data, a data collection methodology must display certain attributes. Since much
of the data of interest for real projects are collected during the test phase, complete analysis of the data
must await project completion. Although it is important that data collection and validation proceed con-
currently with development, the final analysis must be done from a historical viewpoint, after the pro-
ject ends.

Developers can provide data as they make changes during development. In a reasonably well-
controlled software development environment, documentation and code are placed under some form of
configuration control before being released for use by others than the author. Changes are defined as
alterations to baselined design, code, or documentation.

A key factor in the data gathering process is validation of the data as they become available. Such
validity checks result in corrections to the data that cannot be captured at later times owing to the
nature of human memory [391. Timeliness of both data collection and data validation is quite impor-
tant to the accuracy of the analysis.

Careful validation means that the data to be collected must be carefully specified, so that those
supplying data, those validating data, and those performing the analyses will have a consistent view of
the data collected. This is especially important for the purposes of those wishing to repeat studies in
both the same and different environments.

Careful specification of the data requires the data collectors to have a clear idea of the goals of the
study. Specifying goals is itself an important issue, since, without goals, one runs the risk of collecting
unrelated, meaningless data.

To obtain insight into the software development process, the data collectors need to know the
kinds of errors committed and the kinds of changes made. To identify troublesome issues, the effort

2

NRL REPORT 8679

needed to make each change is necessary. For greatest usefulness, one would like to study projects
from software production environments involving teams of programmers.

We may summarize the preceding as the following six criteria:

I. the data must contain information permitting identification of the types of errors and
changes made;

2. the data must include the cost of making changes and correcting errors;

3. data to be collected must be defined as a result of clear specification of the goals of the
study;

4. data should include studies of projects from production environments, involving teams of
programmers;

5. data analysis should be historical, but data must be collected and validated concurrently
with development; and

6. data classification schemes to be used must be carefully specified for the sake of repeata-
bility of the study in the same and different environments.

SCHEMA FOR THE INVESTIGATIVE METHODOLOGY

Our data collection methodology is goal oriented. It starts with a set of goals to be satisfied, uses
these to generate a set of questions to be answered, and then proceeds step-by-step through the design
and implementation of a data collection and validation mechanism. Analysis of the data yields answers
to the questions of interest and may also yield a new set of questions. The procedure relies heavily on
an interactive data validation process; those supplying the data are interviewed for validation purposes
concurrently with the software development process. The methodology has been used in two different
environments to study five software projects developed by groups with different backgrounds using very
different software development methodologies. In both environments it yielded answers to most ques-
tions of interest and some insight into the development methodologies used.

The projects studied vary widely with respect to factors such as application, size, development
team, methodology, hardware, and support software. Nonetheless, the same basic data collection
methodology was applicable everywhere. The schema used has six basic steps, listed in the following,
with considerable feedback and iteration occurring at several different places.

1. Establish the goals of the data collection

We divide goals into two categories: those that may be used to evaluate a particular software
development methodology relative to the claims made for it, and those that are common to all metho-
dologies to be studied.

As an example, a goal of a particular methodology, such as information hiding (401, might be to
develop software that is easy to change. The corresponding data collection goal is to evaluate the suc-
cess of the developers in meeting this goal, i.e., evaluate the ease with which the software can be
changed. Goals in this category may be of more interest to those who are involved in developing or
testing a particular methodology, and must be defined cooperatively with them.

A goal that is of interest regardless of the methodology being used is to characterize changes in
ways that permit comparisons across projects and environments. Such goals may interest software

3

BASILI AND WEISS

engineers, programmers, managers, and others more than goals that are specific to the success or

failure of a particular methodology.

Consequences of omitting goals

Without goals, one is likely to obtain data in which either incomplete patterns or no patterns are
discernible. As an example, one goal of an early study [15] was to characterize errors. During data
analysis, it became desirable to discover the fraction of errors that were the result of changes made to
the software for some reason other than to correct an error. Unfortunately, none of the goals of the
study were related to this type of change, and there were no such data available.

2. Develop a list of questions of interest

Once the goals of the study have been established, they may be used to develop a list of questions
to be answered by the study. Questions of interest define data parameters and categorizations that per-
mit quantitative analysis of the data. In general, each goal will result in the generation of several
different questions of interest. As an example, if the goal is to characterize changes, some correspond-
ing questions of interest are: "What is the distribution of changes according to the reason for the
change?" "What is the distribution of changes across system components?" "What is the distribution of
effort to design changes?"

As a second example, if the goal is to evaluate the ease with which software can be changed, we
may identify questions of interest such as: "Is it clear where a change has to be made in the software?"
"Are changes confined to single modules?" "What was the average effort involved in making a
change?"

Questions of interest form a bridge between subjectively determined goals of the study and the
quantitative measures to be used in the study. They permit the investigators to determine the quanti-
ties that need to be measured and the aspects of the goals that can be measured. As an example, if one
is attempting to discover how a design document is being used, one might collect data that show how
the document was being used when the need for a change to it was discovered. This may be the only
aspect of the document's use that is measurable.

Goals for which questions of interest cannot be formulated and goals that cannot be satisfied
because adequate measures cannot be defined may be discarded. Once formulated, questions can be
evaluated to determine if they completely cover their associated goals and if they define quantitative
measures. Finally, questions of interest have the desirable property of forcing the investigators to con-
sider the data analyses to be performed before any data are collected.

Consequences of omitting questions of interest

Without questions of interest, there may be no quantitative basis for satisfying the goals of the
study. Data distributions that are needed for evaluation purposes, such as the distribution of effort
involved in making changes, may have to be constructed in an ad hoc way, and may be incomplete or
inaccurate.

3. Establish data categories

Once the questions of interest have been established, categorization schemes for the changes and
errors to he examined may be constructed. Each question generally induces a categorization scheme. If
one question is, "What was the distribution of changes according to the reason for the change?" one will
want to classify changes according to the reason they are made. A simple categorization scheme of this
sort is error corrections as opposed to nonerror corrections (hereafter called modifications).

4

NRL REPORT 8679

Each of these categories may be further subcategeriied according to reason. As an example,
modilications could be subdivided into those m1odifications resuIting from requirements changes, those
resulting Irom a change in the de,,elopment support environment (e.g., compiler change), planned
enhmcements, optimizations, and others.

Such a categorization permits characterization of the changes Nwiih respect to the stability of the
development environment, with respect to different kinds of development activities, etc. When
matched with another categorization such as the difficulty of making changes, this schene also reveals
which changes are the most difficult to make.

Each categorization scheme should be complete and consistent, i.e., every change should fit
exactly one of the subcategories of the scheme. To insure completeness, the category "Other" is usually
added as a subcategory. Where some changes are not suited to the scheme, the subcategory "Not
Applicable" may be used. As an example, if the scheme includes subcategories for different leveis of
effort in isolating error causes, then errors for which the cause need not be isolated (e.g., clerical errors
noticed when reading code) belong in the "Not Applicable" subcategory.

Consequences of not defining data categories before collecting data

Omitting the data categorization schemes may result in data that cannot later be identified as
fitting any particular categorization. Each change then tends to define its own category, and the result is
an overwhelming multiplicity of data categories, with little data in each category.

4. Design and test data collection form

To provide a permanent copy of the data and to reinforce the programmers' memories, a data col-
lection form is used. Form design was one of the trickiest parts of the studies conducted. primarilN
because forms represent a compromise among conflicting objectives. Typical conflicts are the desire to
collect a complete, detailed set of data that may be used to answer a wide range of questions of interest.
and the need to minimize the time and effort involved in supplying the data. Satisfying the former
leads to large, detailed forms that require much time to fill out. The latter requires a short form organ-
ized so that the person supplying the data need only check off boxes.

Including the data suppliers in the form design process is quite beneficial. Complaints by those
who must ase the form are resolved early (i.e., before data collection begins), the form may be tailored
to the needs of the data suppliers (e.g., for use in configuration management), and the data suppliers
feel they are a useful part of the data collection process.

The forms must be constructed so that the data they contain can be used to answer the questions
of interest. Several design iterations and test periods are generally needed before a satisfactory design
is found.

Our principal goals in form design were to produce a form that:

I. fit on one piece of paper,
2. could be used in several different programming environments, and
3. permitted the programmer some flexibility in describing the change.

Figures)a and lb show the last version of the form used for the SEL studies. (An earlier version
of the form was significantly modified as a result of experience gained in the data collection and analysis
processes.) The first sections of the form request textual descriptions of the change and the reason it
was made. Following sections contain questions and check-off tables that reflect various categorzation
schemes.

5

RASILI AND WEISS

NUMBER _____

CHANIGE REPORT FORM

PROJECT NAME ________________ ______CURRENT DATE_______

SECTION A - IDENTIFICATION

REASON: Why wa the change made?______________ ______________

DESCRIPTION: What change was made?

EFFECT: What components (or documents) are changed? (include version)

EFFORT: What additional components (or documents) weue examined in determining what change was nedd

(Month Day Yowl

Need for change determined an

Change started on

What was the effort in person time required to understand and implement the chanige?

.. 1 hour or less, -1 hour to I day, -1... day to 3 days. -moe than 3 days

SECTION 8 - TYPE OF CHANGE (How is this change bes chwwwlrized?)

o Error correction 0 Insertion/deletion of debug code

o Planned enhancement E3 Optimization oftmesc/aurc

o Implementation of requirements change 0 Adaptation to environmaens change

o Improvemn of claity, maintainability, or documentation 03 Other (Explain In El

o Improvement of uss sevices

Was more then one component affected by the change? Yes_____ No

FOR ERROR CORRECTIONS ONLY

SECTION C - TYPE OF ERROR (How is this error beer characteriz-ed?)

o Requirements incorrect or misinterpreted 0 Misunderstanding of external environment, except language

ol Functional specifications incorrect or misinterpreted 03 Error in use of programming language/coomplIer

Design error. involving several components 0 Clerical err or

-0Error in the design or implementation oil a single component 0 Other (Explain in E)

FOR DESIGN Oft %MPL~Et4IATIOI4 ERROR& ONLY

L-Ifthe error was in design or implementation:

The error was a mistaken assumption ahout the value or structure of date______________

The error was a mistake in control logic or computation of an expression

ss0.2 is/74)

Fig.]a S~lt chapgc r tort form (front)

6

NRL REPORT 8679 :

FOR ERROR CORRECTIONS ONLY

SECTION D - VALIDATION AND REPAIR

What activities wene used to validate the program, detect the error, and find its cause?

ActvitesActivities Activities F Activities
Used for Successful Tried to Successful
Program in Detecting Find in Finding

Validation I- Error Symptoms Cause Cause

Pacceptance testn s ~________-_____
iP-t-acpitanice use -_________

Inspection of output______ _______ _________

Code reading by programmner -____________ _______

Coereading by other person I ____ ______

Talks miths other programme------
Special debug code
System error messae _________I ___________________ ___________

Project specific error messages __________ __________-_______

Reading documentation

Trace _____ - _____ ~___________ ___________

Crssrference/attribute list___ _______________

What seas the time used to isolate the cause?

-one hour or less, -one hour to one day, -more than one day, -never found

* ~~~If never found, seas a workaround used?_____Yes -___No (Explain in E)

Was this error related to a previous change?

---..Yes (Chanige Report #/Date - - - No --. Can't tell

When did the error enter the system?

-requirements -__functional specs -design -- oding and test --- other -... can't tell

SECTION E - ADDITIONAL INFORMATION

Please give any, information that may be helpful in categorizing the error or change, and understanding its cause and its
ranmificat ions.

-~me ._ --- Authorized: - Date:

Fig. Ib SEL change report form (back)

BASILI AND WEISS

As an example, a categorization of time to design changes is requested in the first question follow-
ing the description of the change. The completer of the form is given the choice of four categories (1
hour or less, 1 hour to 1 day, I day to 3 days, and more than 3 days) that cover all possibilities for
design time.

Consequences of not using a data collection form

Without a data collection form, it is necessary to rely on the developers' memories and on perusal
of early versions of design documentation and code to identify and categorize the changes made. This
approach leads to incomplete, inaccurate data.

5. Collect and validate data

Data are collected by requiring those people who are making software changes to complete a
change report form for each change made, as soon as the the change is completed. Validation consists
of checking the forms for correctness, consistency, and completeness. As part of the validation pro-
cess, in cases where such checks reveal problems, the people who filled out the forms are interviewed.
Both collection and validation are concurrent with software development; the shorter the lag between
programmers completing forms and being interviewed concerning those forms, the more accurate the
data.

Perhaps the most significant problem during data collection and validation is insuring that the data
are complete, i.e., that every change has been described on a form. The better controlled the develop-
ment process, the easier this is to do. At each stage of the process where configuration control is
imposed, change data may be collected. Where projects that we have studied use formal configuration
control, we have integrated the configuration control procedures and the data collection procedures,
using the same forms for both, and taking advantage of configuration control procedures for validation
purposes. Since all changes must be reviewed by a configuration control board in such cases, we are
guaranteed capture of all changes, i.e., that our data are complete. Furthermore, the data collection
overhead is absorbed into the configuration control overhead and is not visible as a separate source of
irritation to the developers.

Consequences of omitting validation

One result of concurrent development, data collection, and data validation is that the accuracy of
the collection process may be quantified. Accuracy may be calculated by observing the number of mis-
takes made in completing data collection forms. One may then compare, for any data category, pre-
validation distributions with post-validation distributions. We call such an analysis a validation analysis.
The validation analysis of the SEL data shows that it is possible for inaccuracies on the order of 50% to
be introduced by omitting validation. To emphasize the consequences of omitting the validation pro-
cedures, we present some of the results of the validation analysis of the SEL data in the next section.

6. Analyze data

Data are analyzed by calculating the parameters and distributions needed to answer the quest'ons
of interest. As an example, to answer the question "What was the distribution of changes according to
the reason for the change?" a distribution such as that shown in Fig. 2 might be computed from the
data.

8

NRL REPORT 8679

70 70

"6O0

P P

E I
R 50. R 50 49

CC

N N
N 40 N 40"

T T

o 30" 0 30- - -

F F

M 20, M 20
0 0
0 0 2

to. 5 0 -

a." Envzg FE , ath., %mq 0.6 1 9 nb.9 E- P'E Jhk-

h-
T

ype O.g.
T

ype

SELI SL

70,

60 Key to Figure
P
E
R 50" Design Modifications caused by changes in design
C

11 4 Debug Modifications to insert or delete debug codeT

0
F Env Modifications caused by changes in the hardware

S24or software environment
M

PE Planned Enhancements

Req Modifications caused by changes in requirements

.q 08619n -bug E- PE th,r or functional specifications

owhg
Type Unknown Causes of these modifications are not known

910
Fig. 2 - Sources of modification

9

BASILI AND WEISS

Application of the Schema

Applying the schema requires iterating among the steps several times. Defining the goals and
establishing the questions of interest are tightly coupled, as are establishing the questions of interest,
designing and testing the form(s), and collecting and validating the data. Many of the considerations
involved in implementing and integrating the steps of the schema have been omitted here so that the
reader may have an overview of the process. The complete set of goals, questions of interest, and data
categorizations for the SEL projects are shown in a companion report [32).

Support Procedures and Facilities

In addition to the activities directly involved in the data collection effort, there are a number of
support activities and facilities required. Included as support activities are testing the forms, collection
and validation procedures, training the programmers, selecting a data base system to permit easy
analysis of the data, encoding and entering data into the data base, and developing analysis programs.

DETAILS OF SEL DATA COLLECTION AND VALIDATION

In the SEL environment, program libraries were used to support and control software develop-
ment. A full-time librarian was assigned to support SEL projects. All project library changes were
routed through the librarian. In general, we define a change to be an alteration to baselined design,
code, or documentation. For SEL purposes, only changes to code, and documentation contained in the
code, were studied. The program libraries provided a convenient mechanism for identifying changes.
A programmer causing a library change was required to complete a change report form (Fig. 1).

The data presented here are drawn from studies of three different SEL projects, denoted SELI,
SEL2, and SEL3. The processing procedures were as follows.

I. Programmers were required to complete change report forms for all changes made to
library routines.

2. Programs were kept in the project library during the entire test phase.

3. After a change was made a completed change report form describing the change was sub-
mitted. The form was first informally reviewed by the project leader. It was then sent to
the SEL library staff to be logged and a unique identifier assigned to it.

4. The change analyst reviewed the form and noted any inconsistencies, omissions, or possi-
ble miscategorizations. Any questions the analyst had were resolved in an interview with
the programmer. (Occasionally the project leader or system designer was consulted rather
than the individual programmer.)

5. The change analyst revised the form as indicated by the results of the programmer inter-
view, and returned it to the library staff for further processing. Revisions often involved
cases where several changes were reported on one form. In these cases, the analyst
insured that there was only one change reported per form; this often involved filling out
new forms. Forms created in this way are known as generated forms.

(Changes were considered to be different if they were made for different reasons, if they
were the result of different events, or if they were made at substantially different times

10

NRL REPORT 8679

(e.g.. several weeks apart). As an example, two different requirements amendments
would result in two different change reports, even if the changes were made at the same
time in the same subroutine.)

Occasionally, one change was reported on several different forms. The forms were then
merged into one form, again to insure one and only one change per form. Forms created
in this way are known as combined forms.

6. The library staff encoded the form for entry into the (automated) SEL data base. A prel-
iminary, automated check of the form was made via a set of data base support programs.
This check, mostly syntaL'ic, ensured that the proper kinds of values were encoded into
the proper fields, e.g., that an alphabetic character was not entered where an integer was
required.

7. The encoded data were entered into the SEL data base.

8. The data were analyzed by a set of programs that computed the necessary distributions to
answer the questions of interest.

Many of the reported SEL changes were error corrections. We define an error to be a discrepancy
between a specification and its implementation. Although it was not always possible to identify the
exact location of an error, it was always possible to identify exactly each error correction. As a result,
we generally use the term error to mean error correction.

For data validation purposes, the most important parts of the data collection procedure are the
review by the change analyst, and the associated programmer interview to resolve uncertainties about
the data.

The SEL validation procedures afforded a good chance to discover whether validation was really
necessary- it was possible to count the number of miscategorizations of changes and associated misin-
formation. These counts were obtained by counting the number of times each question on the form
was incorrectly answered.

An example is misclassifications of errors as clerical errors. (Clerical errors were defined as errors
that occur in the mechanical translation of an item from one format to another, e.g., from one coding
sheet to another, or from one medium to another, e.g., coding sheets to cards.) For one of the SEL
projects, 46 errors originally classified as clerical were actually errors of other types. (One of these con-
sisted of the programmer forgetting to include several lines of code in a subroutine. Rather than cleri-
cal, this was classified as an error in the design or implementation of a single component of the sys-
tem.) Initially, this project reported 238 changes, so we may say that about 19% of the original reports
were misclassified as clerical errors.

The SEL validation process was not suited for verfiying the completeness of the reported data.
We cannot tell from the validation studies how many changes were never reported. This weakness can
be eliminated by integrating the data collection with stronger configuration control procedures.

Validation Differences Among SEL Projects

As experience was gained in collecting, validating, and analyzing data for the SEL projects, the
quality of the data improved significantly, and the validation procedures changed slightly. For SELl
and SEL2, completed forms were examined and programmers interviewed by a change analyst within a
few weeks (typically 3 to 6 weeks) of the time the forms were completed. For project SEL2, the task
leader (lead programmer for the project) examined each form before the change analysts saw it.

11

BASILI AND WEISS

Project SEL3 was not monitored as closely as SELl and SEL2. The task leader, who was the
same as for SEL2, by then understood the data categorization schemes quite well and again examined
the forms before sending them to the SEL. The forms themselves were redesigned to be simpler but
still capture nearly all the same data. Finally, several of the programmers were the same as on project
SEL2 and were experienced in completing the forms.

Estimating Inaccuracies in the Data

Although there is no completely objective way to quantify the inaccuracy in the .alidated data, we
believe it to be no more than 5% for SELl and SEL2. By this we mean that no more than 5% of the
changes and errors are misclassified in any of the data collection categories. For the major categories,
such as whether a change is an error or modification, the type of change, and the type of error, the
inaccuracy is probably no more than 3%.

For SEL3, we attempted to quantify the results of the validation procedures more carefully. After
validation, forms were categorized according to our confidence in their accuracy, We used four
categories:

1. Those forms for which we had no doubt concerning the accuracy of the data. Forms in
this cateogry were estimated to have no more than a 1% chance of inaccuracy.

2. Those forms for which there was little doubt about the accuracy of the data. Forms in
this category were estimated to have at most a 10% chance of an inaccuracy.

3. Those forms for which there was some uncertaincy about the accuracy, with an estimated
inaccuracy rate of no more than 30%.

4. Those forms for which there was considerable uncertaincy about the accuracy, with an
estimated inaccuracy rate of about 50%.

Applying the inaccuracy rates to the number of forms in each category gave us an estimated inaccuracy
of at most 3% in the validated forms for SEL3.

Prevalent Mistakes In Completing Forms

Clear patterns of mistakes and misclassifications in completing forms became evident during vali-
dation. As an example, programmers on projects SELl and SEL2 frequently included more than one
change on one form. Often this was a result of the programmers sending the changes to the library as a
group.

Comparative Validation Results

Figure 3 provides an overview of the results of the validation process for the 3 SEL projects. The
percentage of original forms that had to be corrected as a result of the validation process is shown. As
an example, 32% of the originally completed change report forms for SEL3 were corrected as a result of
validation. The percentages are based on the number of original forms reported (since some forms
were generated, and some combined, the number of changes reported after validation is different than
the number reported before validation). Figure 4 shows the fraction of generated forms expressed as a
percentage of total validated forms.

Figure 3 shows that pre-validation SEL3 forms were significantly more accurate than the pre-
validation SELl or SEL2 forms. When the generated and combined forms are also considered, the
pre-validation SEL3 data appear to be considerably better then the pre-validation data for either of the
other projects. We believe the reasons for this are the improved design of the form, and the familiarity

12

NRL REPORT 8679

70,

60'

F , __ 51
50'

0
R
I 40O

N 30'

L
20-

F
0
R
M
S

0-
SELI SEL2 SE3

PRJECT

Fig 3 - Corrected forms

of the task leader and programmers with the data collection process. (Generated forms are shown in
Fig. 4. Combined forms for all of the projects represented a very small fraction of the total validated
forms.)

These (overall) results show that careful validation, including programmer interviews, is essential
to the accuracy of any study involving change data. Furthermore, it appears that with well-designed
forms, and programmer training, there is improvement with time in the accuracy of the data one can
obtain. We do not believe that it will ever be possible to dispense entirely with programmer interviews,
however.

P
E 401
R

C 35

N

30

0
F

A 20o
LI 1 1 L.

ATE
0

F J
0

R 0L...
M SILI 71 SEL.3

S MJECT

Fig. 4 - Generated forms

13

BASILI AND WEISS

Erroneous Classifications

Table I shows misclassifications of errors as modifications and modifications as errors. As an
example, for SELl, 14% of the original forms were classified as modifications, but were actually errors.
Without the validation process, considerable inaccuracy would have been introduced into the initial
categorization of changes as modifications or errors.

Table 2 shows a sampling of other kinds of classification errors that could contribute significantly
to inaccuracy in the data. All involve classification of an error into the wrong subcategory. The first
row shows errors that were classified by the programmer as clerical, but were later reclassified as a
result of the validation process into another category. For SELl, significant inaccuracy (19%) would be
introduced by omitting the validation process.

Table 3 is similar to Table 2, but shows misclassifications involving modifications. The first row
shows modifications that were classified by the programmer as requirements or specifications changes,
but were reclassified as a result of validation.

Table 1-Erroneous Modification and Error Classifications
(Percent of Original Forms)

SELi SEL2 SEL3
Modifications classified as errors 1% 5% less than 1%
Errors classified as modifications 14% 5% /2%

Table 2-Typical Error Type Misclassifications

(Percent of Original Forms)

Original Classification SEL I SEL2 SEL3

Clerical Error 19% 7/0 6%

(Use of) Programming Language 0%" 5% 3%

Incorrect or Misinterpreted Requrements 0% less than 1%

Design Error 8% 1%

Table 3-Erroneous Modification Classifications
(Percent of Original Forms)

SELl SEL3
-Requirements or specification change 1% less than 1%
Design change 8% 1%

Optimization 8% less than 1%
Other 3% less than 1%

Variation in Misclassification

Data on misclassifications of change and error type subcategories, such as shown in Table 2, tend
to vary considerably among both projects and subcategories. (Misclasssification of clerical errors as
shown in Table 2 is a good example.) Most likely this is because the misclassifications represent biases
in the judgements of the programmers. It became clear during the validation process that certain pro-
grammers tended toward particular misclassifications.

14

NRL REPORT 8679

The consistency between projects SEL2 and SEL3 in Table 2 probably occurs because both pro-
jects had the same task leader, who screened all forms before sending them to the SEL for validation.

Conclusions Concerning Validation

The preceding sections have shown that the validation process, particularly tht: programmer inter-
views, are a necessary part of the data collection methodology. Inaccuracies on the order of 50% may
be introduced without this form of validation. Furthermore, it appears that with appropriate form
design and programmer experience in completing forms, the inaccuracy rate may be substantially
reduced, although it is doubtful that it can be reduced to the level where programmer interviews may
be omitted from the validation procedures.

A second significant conclusion is that the analysis performed as part of the validation process
may be used to guide the data collection project; the analysis results show what data can be reliably and
practically collected, and what data cannot be. Data collection goals, questions of interest, and data col-
lection forms may have to be revised accordingly.

RECOMMENDATIONS FOR DATA COLLECTORS

We believe we now have sufficient experience with change data collection to be able to apply it
successfully in a wide variety of environments. Although we have been able to make comparisons
between the data collected in the two environments we have studied [411, we w6uld like to make com-
parisons with a wider variety of environments. Such comparisons will only be possible if more data
become available. To encourage the establishment of more data collection projects, we feel it is impor-
tant to describe a successful data collection methodology, as we have done in the preceding sections, to
point out the pitfalls involved, and to suggest ways of avoiding those pitfalls.

Procedural Lessons Learned

Problems encountered in various procedural aspects of the studies were the most difficult to over-
come. Perhaps the most important are the following.

1. Clearly understanding the working environment and specifying the data collection pro-
cedures were a key part of conducting the investigation. Misunderstanding by the pro-
grammer of the circumstances that require him/her to file a change report form will preju-
dice the entire effort. Prevention of such misunderstandings can be accomplished partly
by training procedures and good forms design, but feedback to the development staff, i.e.,
those filling out the data collection forms, must not be omitted.

2. Similarly, misunderstanding by the change analyst of the circumstances that required a
change to be made will result in misclassifications and erroneous analyses. Our SEL data
collection was helped by the use of a change analyst who had previously worked in the
NASA environment and understood the application and the development procedures
used.

3. Timely data validation through interviews with those responsible for reporting errors and
changes was vital, especially during the first few projects to use the forms. Without such
validation procedures, data will be severely biased, and the developers will not get the

feedback to correct the procedures they are using for reporting data.

4. Minimizing the overhead imposed on the people who were required to complete change
reports was an important factor in obtaining complete and accurate data. Increased over-
head brought increased reluctance to supply and discuss data. In projects where data

15

BASILI AND WEISS

collection has been integrated with configuration control, the visible data collection and
validation overhead is significantly decreased, and is no longer an important factor in
obtaining complete data. Because configuration control procedures for the SEL environ-
ment were informal, we believe we did not capture all SEL changes.

5. In cases where an automated data base is used, data consistency and accuracy checks at)I
immediately prior to analysis are vital. Errors in encoding data for entry into the data base
will otherwise bias the data.

Nonprocedural Lessons Learned

In addition to the procedural problems involved in designing and implementing a data collection
study, we found several other pitfalls that could have strongly affected our results and their interpreta-
tion. They are listed in the following.

1. Perhaps the most significant of these pitfalls was the danger of interpreting the results
without attempting to understand factors in the environment that might affect the data.
As an example, we found a surprisingly small percentage of interface errors on all of the
SEL projects. This result was surprising since interfaces are an often-cited source of
errors. There was also other evidence in the data that the software was quite amenable to
change. In trying to understand these results, we discussed them with the principal
designer of the SEL projects (all of which had the same application). It was clear from
the discussion that as a result of their experience with the application, the designers had
learned what changes to expect to their systems, organized the design so that the expected
changes would be easy to make, and then re-used the design from one project to the next.
Rather than misinterpreting the data to mean that interfaces were not a significant
software problem, we were led to a better understanding of the environment we were
studying.

2. A second pitfall was underestimating the resources needed to validate and analyze the
data. Understanding the change reports well enough to conduct meaningful, efficient pro-
grammer interviews for validation purposes initially consumed considerable amounts of
the change analysts' time. Verifying that the data base was internally consistent, com-
plete, and consistent with the paper copies of reports, was a continuing source of frustra-
tion and sink for time and effort.

3. A third potential pitfall in data collection is the sensitivity of the data. Programmers and
designers sometimes need to be convinced that error data will not be used against them.
This did not seem to be a significant problem on the projects studied for a variety of rea-
sons, including management support, processing of the error data by people independent
of the project, identifying error reports in the analysis process by number rather than
name, informing newly hired project personnel that completion of error reports was con-
sidered part of their job, and high project morale. Furthermore, project management did
not need error data to evaluate performance.

4. One problem for which there is no simple solution is the Hawthorne (or observer) effect
[421. When project personnel become aware that an aspect of their behavior is being
monitored, their behavior will change. If error monitoring is a continuous, long-term
activity that is part of the normal scheme of software development, not associated with
evaluation of programmer performance, this effect may become insignificant. We believe
this was the case with the projects studied.

16

NRL REPORT 8679

5. The sensitivity of error data is enhanced in an environment where development is done
on contract. Contractors may feel that such data are proprietary. Rules for data collection
may have to be contractually specified.

Avoiding Data Collection Pitfalls

In the foregoing sections a number of potential pitfalls in the data collection process have been
described. The following list includes suggestions that help avoid some of these pitfalls.

I. Select change analysts who are familiar with the environment, application, project, and
development team.

2. Establish the goals of the data collection methodology and define the questions of interest
before attempting any data collection. Establishing goals and defining questions should be
an iterative process performed in concert with the developers. The developers' interests
are then served as well as the data collector's.

3. For initial data collection efforts, keep the set of data collection goals small. Both the
volume of data and the time consumed in gathering, validating, and analyzing it will be
unexpectedly large.

4. Design the data collection form so that it may be used for configuration control, so that it
is tailored to the project(s) being studied, so that the data may be used for comparison
purposes, and so that those filling out the forms understand the terminology used. Con-
duct training sessions in filling out forms for newcomers.

5. Integrate data collection and validation procedures into the configuration control process.
Data completeness and accuracy are thereby improved, data collection is unobtrusive, and
collection and validation become a part of the normal development procedures. In cases
where configuration control is not used or is informal, allocate considerable time to pro-
grammer interviews, and, if possible, documentation search and code reading.

6. Automate as much of the data analysis process as possible.

Limitations

It has been previously noted that the main limitation of using a goal-directed data collection
approach in a production software environment is the inability to isolate the effects of single factors.
For a variety of reasons, controlled experiments that may be used to test hypotheses concerning the
effects of single factors do not seem practical. Neither can one expect to use the change data from
goal-directed data collection to test such hypotheses.

A second major limitation is that lost data cannot be accurately recaptured. The data collected as
a result of these studies represent five years of data collection. During that time there was considerable
and continuing consideration given to the appropriate goals and questions of interest. Nonetheiess, as
data were analyzed, it became clear that there was information that was nevr requested but that would
have been useful. An example is the length of time each error remained in the system. Programmers
correcting their own errors, which was the usual case, can supply this data easily at the time they
correct the error. Our attempts to discover error entry and removal times after the end of development
were fruitless. (Error entry times were particularly difficult to discover.) Given such data, one could
isolate errors that were not easily susceptible to detection. This type of example underscores the need
for careful planning prior to the start of data collection.

17

BASILI AND WEISS

Recommendations That May Be Provided to the Software Developer

The nature of the data collection methodology and the environments in which it can be used do
not generally permit isolation of the effects of particular factors on the software development process.
The results cannot be used to suggest that controlling a particular factor in the development process will
reduce the quantity or cost of particular kinds of errors. We have found that the patterns found in the
data do suggest that certain approaches, when applied in the environment studied, will improve the
development process.

As an example, in the SEL environment neither external problems, such as requirements
changes, nor global problems, such as interface design and specification, were significant. Furthermore,
the development environment was quite stable. Most problems were associated with the individual pro-
grammer. The data show that in the SEL environment it would clearly pay to impose more control on
the process of composing individual routines. Since detecting and correcting most errors was apparently
quite easy in the overwhelming majority of cases, more attention should be paid to preventing errors
from entering the code initially.

CONCLUSIONS CONCERNING DATA COLLECTION
FOR METHODOLOGY EVALUATION PURPOSES

The data collection schema presented has been applied to five different projects in two different
environments. We have been able to draw the following conclusions as a result of designing and imple-
menting the data collection processes.

1. In all cases, it has been possible to collect data concurrently with the software develop-
ment process in a software production environment.

2. Data collection may be used to evaluate the application of a particular software develop-
ment methodology, or simply to learn more about the software development process. In
the former case, the better defined the methodology, the more nrecisely the goals of the
data collection may be stated.

3. The better controlled the development process, the more accurate and complete the data.

4. For all projects studied, it has been necessary to validate the data, including interviews
with the project developers.

5. As patterns are discerned in the data collected, new questions of interest emerge. These
questions may not be answerable with the available data, and may require establishing
new goals and questions of interest.

The difficulties involved in conducting large scale controlled software engineering experiments
have prevented evaluations of software development methodologies in the environments where they
are often claimed to work best. As a result, software engineers must depend on less formal techniques
that can be used in real working environments to establish long-term trends. We view change analysis
as one such technique and feel that more techniques, and many more results obtained by applying such
techniques, are needed.

ACKNOWLEDGMENTS

Without the many people who took time to fill out forms and submit to being interviewed, this
research would be impossible. All the NASA/GSFC contractor-supplied programmers and in-house

18

NRL REPORT 8679

NASA programmers were helpful in this regard. Particularly helpful were Jean Grondalski and Dr.
Gerald Page. Sam DePriest was particularly adept at organizing, storing, and retrieving large numbers
of change report forms.

Support for a research project involving data collection in a production environment must come
from many sources. These sources include project management, the programmers supplying the data,
those maintaining the data base, those assisting in data analysis, and those providing technical review
and guidance. A few of the people providing such support were Dr. John Gannon, Dr. Richard
Meltzer, Frank McGarry, Dr. Gerald Page, Dr. David Parnas, Dr. John Shore, and Dr. Marvin Zel-
kowitz.

Research that relies on the analysis of large quantities of data must also rely on human (and com-
puter) efforts to analyze that data. Part of the necessary computer support was provided by the Univer-
sity of Maryland Computer Center. Other, significant, support came from Kathy Kragh, Tamara Lewis,
Joanne Glazer-Weiss, Joshua Weiss, and Shana Weiss.

Deserving of special mention is Frank McGarry, who had sufficient foresight and confidence to
sponsor much of this work and to offer his projects for study.

REFERENCES

I. B. Boehm and A. Haile, "Information processing/Data Automation Implications Of Air Force
Command and Control Requirements in the 1980's (CCIP-85)," Space and Missile Systems
Organization, Los Angeles, SAMSO-TR-72-200-11 (February 1972).

2. B. Boehm "Software and Its Impact: A Quantitative Assessment," Datamation 19(5), 48-59 (May
1973).

3. R. Wolverton, "The Cost of Developing Large Scale Software," IEEE Trans. Computers 23(6),
615-636 (1974).

4. T. Bell, D. Bixler, and M. Dyer, "An Extendable Approach to Computer-Aided Software Requir-
ments Engineering," IEEE Trans. Software Engineering SE-3(1), 49-60 (January 1977).

5. A. Ambler, D. Good, J. Browne, W. Burger, R. Cohen, C. Hoch, and R. Wells, "GYPSY: A
Language for Specification and Implementation of Verifiable Programs," Proc. of the ACM
Conference on Language Design for Reliable Software, 1-10 (March 1977).

6. Z. Manna and R. Waldinger, "Synthesis: Dreams - > Programs," IEEE Trans. Software Engineer-
ing SE-5(4), 294-329 (July 1979).

7. K. Heninger, "Specifying Software Requirements for Complex Systems: New Techniques and
Their Application," IEEE Trans. Software Engineering SE-6, 2-13 (January 1980).

8. D.L. Parnas, "A Technique for Software Module Specification with Examples," Comm. ACM
15(5), 330-336 (May 1972).

9. J. Guttag, "The Specification and Application to Programming of Abstract Data Types," CSRG-59,
University of Toronto Dept. of Computer Science Computer Systems Research Group (1975).

10. J. Guttag, "Abstract Data Types and the Development of Data Structures," Comm. ACM 20,
396-404 (June 1976).

19

BASILI AND WEISS

11. B. Liskov and S. Zilles, "Specification Techniques for Data Abstractions," IEEE Trans. Software
Engineering SE-1(1), 7-19 (March 1975).

12. R. Linger, H. Mills, and B. Witt, Structured Programming Theory and Practice. Addison-Wesley,
Reading (1979).

13. S. Caine and E. Gordon, "PDL-A tool for software design," Proc. Nat. Computer Conf., 271-276
(1975).

14. H. Elovitz, "An Experiment in Software Engineering: The Architecture Research Facility as a Case
Study," Proc. Fourth Intnl. Conf. Software Engineering, 145-152 (1979).

15. D. Weiss, "Evaluating Software Development by Error Analysis: The Data from the Architecture
Research Facility," J. Systems and Software 1, 57-70 (1979).

16. E.W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs (1976).

17. R.W. Floyd, "Assigning Meanings to Programs," Proc. Symposium in Applied Mathematics XIX.
19-32 American Mathematical Society (1967).

18. C.A.R. Hoare, "An Axiomatic Basis for Computer Programming," Comm. ACM 12(10), 576-580
(October 1969).

19. F. Baker, "Chief Programmer Team Management of Production Programming," IBM Systems
Journal 11(1), 56-73 (1972).

20. E.W. Dijkstra, "Notes on Structured Programming," in Structured Programming. Academic Press,
London (1972).

21. D.E. Knuth, "Structured Programming with Go To Statements," Computing Surveys 6(4), 261-
301 (December 1974).

22. H. Mills, "Chief Programmer Teams: Principles and Procedures," FSC 71-5108, IBM Federal Sys-
tems Division (1971).

23. H. Mills, "Mathematical Foundations for Structured Programming," FSC 72-6012, IBM Federal
Systems Division (1972).

24. N. Wirth, "Program Development by Stepwise Refinement," Comm. ACM 14(4), 221-227 (April
1971).

25. E. Satterthwaite, "Debugging Tools for High-Level Languages," Software-Practice and Experi-
ence 2(3), 197-217 (July-September 1972).

26. W. Howden, "Theoretical and Empirical Studies of Program Testing," Proc. Thrid Intntl. Conf.
Software Engineering, 305-311 (May 1978).

27. J. Goodenough and S. Gerhart, "Toward a theory of test data selection," Proc. Intntl. Conf. Reli-
able Software, 493-510 (1975).

28. J. Gannon, "Language Design to Enhance Programming Reliability," CSRG-47, University of
Toronto Dept. of Computer Science Computer Systems Research Group (1975).

20

NRL REPORT 8679

29. J. Gannon and J. Horning, "Language Design for Programming Reliability," IEEE Trans. Software
Eng. SE-1(2), 179-191 (June 1975).

30. C.A.R. Hoare and N. Wirth, "An Axiomatic Definition of the Programming Language Pascal,"
Acta Informatica 2, 335-355 (1973).

31. K. Jensen and N. Wirth, PASCAL: User Manual and Report Second Edition, Springer-Verlag, New
York (1974).

32. V. Basili and D. Weiss, "Evaluating Software Development by Analysis of Changes: The Data
From the Software Engineering Laboratory," NRL Report in preparation.

33. V. Basili, M. Zelkowitz, F. McGarry, et. al., "The Software Engineering Laboratory," Report TR-
535, University of Maryland (May 1977).

34. B. Boehm, "An Experiment in Small-Scale Application Software Engineering," Report TRW-SS-
80-01, TRW (1980).

35. A. Endres, "Analysis and Causes of Errors in Systems Programs," Proc. Intntl. Conf. Reliable
Software, 327-336 (1975).

36. V. Basili and D. Weiss, "Evaluation of a Software Requirements Document by Analysis of Change
Data," Proc. Fifth Intntl. Conf. Software Engineering, 314-323 (March 1981).

37. G. Craig, W. Hetrick, M. Lipow, T. Thayer, and J. Yoxtheimer, "Software Reliability Study,"
Report RADC-TR-74-250, Rome Air Development Center (October 1974).

38. E. Youngs, "Error-Proneness in Programming," Ph.D. Thesis, University of North Carolina, Dept.
of Psychology, Chapel Hill (1970).

39. G. Miller, "The Magical Number Seven, Plus or Minus Two: Some Limits on our Capacity for
Processing Information," The Psychological Review 63(2), 81-97 (March 1956).

40. D.L. Parnas, "On the Criteria to be used in Decomposing Systems into Modules," Comm. ACM
15(12), 1053-1058 (December]q72).

41. D. Weiss, "A Comparison of Errors in Different Software-Development Environments," NRL
Report 8598, July 9, 1982.

42. J. Brown, The Social Psychology of Industry, Penguin Books, Baltimore (1954).

21

.4

